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An Improved Floating-Random-Walk Algorithm for
Solving the Multi-Dielectric Dirichlet Problem

Jayant N. Jere and Yannick L. Le Coz

Abstract— An improved floating-random-walk algorithm for
solving the multi-dielectric Dirichlet problem is outlined. The
improvement is achieved by using statistically generated Green’s
functions that are calculated before hand and stored as look-up
tables. These tables have been used to solve the multi-dielectric
Dirichlet problem for an arbitrary two dimensional geometry.
The improved algorithm is also compared with the conventional
floating-random-walk algorithm and is found to be at least two
times more efficient. Results are presented for two types of
parallel plate geometries.

1. INTRODUCTION

ECENT interest has focused on the effect of high density
Rinterconnects in complex integrated circuits. Advances in
lithography and etching techniques have resulted in reduction
of minimum feature size and, at the same time, advances in
materials technology have allowed integration of more devices
for a given area. Consequently, electrical interconnections
begin to play a more significant role in the limits of device
and circuit performance [1]. The electrical characteristics of
interconnects, namely their resistances, inductances, and ca-
pacitances must be carefully characterized in order to optimize
circuit behavior [2].

Degradation of the signal integrity and speed due to cou-
pling and stray capacitances has prompted the development of
capacitance analysis programs [3]. One method for obtaining
the capacitance characteristics for a particular cross-sectional
geometry involves solving the two-dimensional Dirichlet prob-
lem for Laplace’s equation,

V- le(z,y)VV(z,y)] =0, €))]
where the electric potential V(z,y) is prescribed on the
boundary of a given domain. Traditionally, this problem has
been solved deterministically, either analytically for simple
geometries exhibiting spatial symmetry or numerically for
more complicated geometries. Due to the complexity of typical
integrated circuit cross-sections numerical techniques are most
commonly employed.

The two most common numerical techniques are the Finite
Difference Method (FDM) and the Finite Element Method
(FEM). The drawback of any deterministic technique is that
in order to find the potential at some local point, the solution
must be obtained globally. This is due to the very nature of
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deterministic numerical techniques in that the entire domain
of interest is discretized: a mesh for the FDM technique and
sub-regions (elements) for the FEM technique. In the FDM
technique Laplace’s equation is replaced by its difference
equation equivalent and then either direct (matrix inversion)
or iterative (relaxation) methods are employed to solve for
the potential. In the FEM technique the solution of Laplace’s
equation is approximated by a simple function over each
element. The global solution is then obtained by combining the
solutions for the many elements. If the solution of the potential
equation is required at only one point (or some limited number
of points as in a capacitance calculation), then considerable
amount of time is wasted in calculating potentials at points
that are of little or no interest.

An alternate, less common method for solving Laplace’s
equation employs a statistical approach [4], [5]. This approach
allows a solution to be found at any desired point without
knowing the solution nearby. Therefore, statistical methods
become ideal for capacitance calculations where only a select
number of points are important.

The object of this paper is not to calculate capacitances,
but to present an improved algorithm for solving the multi-
dielectric Dirichlet problem that can be embedded in a sto-
chastic capacitance extraction algorithm. Specifically, we show
how existing algorithms for the multi-dielectric Dirichlet prob-
lem can be improved by using statistically calculated Green’s
functions.

In Section II we begin our presentation by discussing how
random-walk algorithms for the Dirichlet problem arise from
statistical evaluation of integrals. We cover in this discussion
both the single-dielectric and multi-dielectric cases; and we
outline the random-walk algorithm for both cases. In Section
III an improved algorithm for the multi-dielectric problem
is presented and discussed. In Section IV, numerical results
for our improved algorithm are compared with the standard
floating-random-walk algorithm for two different parallel-plate
geometries. Lastly, in Section V we present some discussion
and conclusions.

II. FLOATING-RANDOM-WALK ALGORITHM

The floating-random-walk algorithm (FRWA) has been pre-
sented in detail elsewhere [6]-[8]. Here we will review the
essential principles behind the FRWA since it provides a mo-
tivation for generating an improved multi-dielectric algorithm.

Refer to Fig. 1, where over the circumference of a unit
circle we have prescribed some arbitrary potential V().
The quantity ¢ measures the polar angle and we assume a
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V(¢) defined on
circumference

()

Fig. 1. Unit circle enclosing a single dielectric domain.

homogeneous medium with dielectric constant €. To calculate
the potential at the center of the circle, we use the Poisson
integral formula [9] to get

27
V(o) = A AV (¢)p(¢), )
in which
p() = 5 @

It has been shown [8] that
27 1 N
Vo = [ avere) = g V) @
i=1

where @, is a random number whose probability density
function (PDF) is p(¢). In other words, the potential at the
center of the circle can be determined using the following
statistical procedure: Pick random numbers ®;(¢ = 1,---, N)
whose PDF is p(¢) and evaluate V(®;). Take the average of
N such values of V' to obtain the potential at the center. Note,
that for this homogeneous case, the potential at the center of
the circle is independent of the dielectric constant.

Now, refer to Fig. 2. The domain is inhomogeneous pos-
sessing dielectric constants €; and e2. In this situation the
dielectric interface lies on the diameter of the unit circle. The
center potential is now given by [10].

vo=(22)(3) [ wve

£9 1
H(2) () [ wne. o

When the two dielectrics are the same (e1 = €2) (5) reduces to

1 27
=5 [ v,

as required. We defer the statistical interpretation of (5) until
discussion of our multi-dielectric random-walk algorithm.

V(0) ©)

A. Single-Dielectric Case

At this point we briefly review the FRWA for the single
dielectric geometry of Fig. 3. The boundary is assumed to
have some prescribed voltage V (s). The parameter s measures
boundary length. We will statistically evaluate the potential

V4(9)

3]

AN

S\
Va(9)

Fig. 2. Unit circle spanning a multi-dielectric domain with diameter on
dielectric interface.
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Fig. 3. Single-dielectric geometry illustrating the FRWA.

at some arbitrary point pg. We begin by drawing the largest
possible circle with radius rq centered at py that does not cross
the boundary. This we term a “maximal circle.” In accordance
with (4), we choose a polar angle randomly that is uniformly
distributed on [0, 2x]. This angle specifies a new point p; on
the circle circumference. Again, a maximal circle, this time
with radius 71, is drawn. A uniformly distributed random angle
is chosen to specify a new point p2 on the new circumference.
This procedure is repeated until the point lies within some
small distance, say 6g, of an electrode. At this point the
random walk terminates and is “captured” by the electrode. We
take as the reward the value of the potential of the electrode
nearest the termination point, in this example, V(sg).

If the above procedure is repeated N times, the potential
at the point po will be the average reward, the sum of all the
rewards divided by N. As N increases the calculated result
becomes more accurate with a statistical error ~ % [8].

B. Multi-Dielectric Case

Some modifications, however, are required to handle the
multi-dielectric problem. Note Fig. 4, where the structure
consists of two different dielectrics 1 and 5. Suppose, again,
we are to find the potential at the point pg. We begin by
drawing a maximal circle, in this case limited by the distance to
the nearest electrode or dielectric interface [8]. Therefore, the
maximal circle will usually be smaller than the maximal circle
in the single-dielectric case. New points are randomly chosen
as before except that now the random walk can be captured
by either the outer boundary or the dielectric interface.
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Fig. 4. Multi-dielectric geometry illustrating the FRWA.

If the random walk is captured by the boundary, the walk
is terminated and the reward is the value of the potential
at the boundary electrode. If the walk is captured by the
dielectric interface as shown in Fig. 4 (ps), then a maximal
circle is drawn about the interface termination point. This is
reminiscent of Fig. 2 where (5) applies. Accordingly the walk
must end upon the circumference of the circle in medium €4
or on the circumference in medium e,. Which circumference
is determined by the coefficients of the two terms in (5).
The probability of transition to dielectric £; is therefore
€1/(e1 + €2), and the probability of transition to dielectric
g2 i8 €2/(g1 + £2). The specific polar angle is found on the
respective semi-circle in the usual way. For example, suppose
the next transition is in £;, then we choose an angle between
[0,7] in a uniform manner. If, on the other hand, the next
transition is in €5 (as shown for p3), then we choose an angle
between [r, 2] with uniform PDF. This scheme requires the
generation of two random numbers, one to determine in which
dielectric region the transition is to take place, and another to
determine the associated polar angle. As expected, the random
walk terminates when encountering a boundary to within a
distance ép.

Repeating the above procedure NV times, the potential at the
point pg will be the average reward, calculated as the sum of
all the rewards divided by N. Observe that it is possible for
the random walk to make several transitions at the dielectric
interface before being captured at the boundary.

III. IMPROVED ALGORITHM

We present an improved algorithm for the multi-dielectric
problem. Fig. 5 shows the point po where the potential
is to be found. The maximal circle is drawn only to the
nearest boundary, the dielectric interface being ignored. Fig.
6 shows the first maximal circle depicted in Fig. 5. Clearly,
(5) no longer holds because the dielectric interface is not a
circle diameter. Unfortunately there is no simple analytical
expression describing the transition probability to medium £4
or 5. In fact, these transition probabilities are a function of
the normalized distance d/a, and the dielectric constants as
shown in Fig. 6. Here, a is the radius of the circle and |d| is
the normal distance form the dielectric interface to the center
of the circle. The sign for d is +/— depending on whether the
dielectric interface js in the upper/lower half of the circle.
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Fig. 5. Multi-dielectric geometry illustrating improved FRWA.
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Fig. 6. Unit circle spanning multi-dielectric medium with diameter not on
a dielectric interface.

We have resorted to a numerical evaluation of the transition
probabilities for the structure of Fig. 6 as part of the improved
FRWA for the multi-dielectric problem described here. As
opposed to receiving a reward equal to the potential on the
circumference, the point at which the random walk terminated
(to within a distance §g) was recorded.

For a series of fixed d/a and e2/eq ratios, 10® random
walks were performed. Fig. 7 plots the numerically calculated
transition probability density function for the case d/a =
—0.5,e1 = 1.0 and €5 = 3.9, as a function of polar angle ¢.
These transition probability density functions are essentially
surface Green’s functions for this problem [11], [12]. By
integrating the transition probability density function, one
obtains the cumulative distribution function (CDF). The CDF
enables one to obtain random numbers with the corresponding
PDF using uniformly distributed random numbers. We have
obtained Green'’s functions for d/a ranging from —0.9 to +0.9
in increments of 0.1 and £5/e; = 3.9. Their corresponding
CDFs have been stored in computer memory to be used as
look-up tables.

Our improved multi-dielectric algorithm can now be de-
scribed as follows. Referring back to Fig. 5, we start the
random walk at point pg by drawing a maximal circle rp to
the nearest outer boundary. Next, the distance to the dielectric
interface is computed and normalized by the radius of the
maximal circle. This yields the distance d/a which is rounded
to the nearest d/a in the Green’s function look-up table. By
generating a random number with a suitable PDF (an example
of which is shown in Fig. 7 for d/a = —0.5) the polar angle
for the next transition is immediately determined. The random
walk is continued in this manner until captured by the outer
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Fig. 7. The numerically calculated PDF for the geometry 1n Fig. 6, where
y=—0.5,8, = 1.0, and g2 = 3.9.

TABLE 1
RESULTS OF POTENTIAL CALCULATION FOR OLD AND NEW METHODS
AND COMPARISON WITH ANALYTICAL VALUES FOR STANDARD
Two -DIMENSIONAL PARALLEL-PLATE GEOMETRY OF FIG. 8.

y Analytical Potential Percent Potential Percent
Position Value Due to Old | Error | Due to New Error
(V) Method (V) Method (V)
1.0 0.408 0.403 & 0.022 1.2 0.413 + 0.019 1.2
2.0 0.816 0.818 + 0.026 0.2 0.845 + 0.028 3.6
3.0 1.224 1.226 + 0.035 0.2 1.257 £ 0.037 2.7
4.0 1.663 1.679 £ 0.039 2.8 1.608 £ 0.031 1.5
5.0 2.041 2.045 £ 0.038 0.2 2.095 + 0.045 2.6
6.0 3.633 3.777 + 0.046 4.0 3.628 + 0.049 0.1
7.0 5.224 5.262 + 0.041 0.7 5.225 + 0.050 0.0
8.0 6 816 6.775 + 0.048 0.6 6.808 + 0.051 0.1
9.0 8.408 8.395 £ 0.035 0.2 8.429 + 0.037 0.2

boundary. It is possible for the maximal circle not to intersect
the dielectric interface in which case the next point is chosen
in accordance with the usual FRWA for a single dielectric.

The advantage of this improved algorithm is that “bouncing”
back and forth at the dielectric interface is minimized since
the random walk can essentially “pass,” unimpeded, through
a dielectric interface. A faster algorithm thereby results.

IV. NUMERICAL RESULTS

We compare the usual FRWA with our improved version
for two parallel-plate geometries. Fig. 8 shows a simple
parallel-plate geometry with the dielectric interface half-way
in between. The lengths of the plates and interface were chosen
large enough so that fringing effects could be neglected. The
upper region has a dielectric constant e; = 1.0 and the lower
region has a dielectric constant 9 = 3.9. The upper electrode
is fixed at 10.0 volts and the lower electrode is fixed at 0.0
volts. The potential is calculated at nine different points. The
x coordinate of all the points is fixed at 50 units and the
y coordinate of the nine points range from 1 to 9 units.
Table I lists the potential as a function of y. The results for
the conventional algorithm and new algorithm are compared
to exact analytical values. We present the 95% confidence
intervals for the simulated data. Statistically, there is no loss
of accuracy with the improved method when compared to the
conventional method.

Fig. 9 shows the difference in execution time between the
two algorithms for different values of y. The execution time for
the new method does not include the time required to initially
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Fig. 8. Geometry for parallel-plate capacitor structure with two dielectrics.
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Fig. 9. Plot of execution time versus position for the old and new methods.
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Fig. 10. Geometry for micro-strip structure with two dielectrics.

load the table in memory (on the order of 1-2 seconds). Be-
cause random walks in the conventional method are captured
by the dielectric interface before passage, numerous reflections
about the interface occur; consequently execution is slower.
We observe this phenomenon, in particular, when the initial
point of the random walk lies near to the dielectric interface
(y = 5.0). Note as well, execution time for the improved
method remains more or less constant with y.

Fig. 10 shows the micro-strip geometry for which no
analytical solution of the potential exists. The finite size of the
top electrode causes important fringing effects. Between the
two electrodes the medium has dielectric constant €5 = 3.9,
and above the top electrode is vacuum with dielectric constant
€1 = 1.0. The potential on the top electrode is 10.0 volts and
the bottom electrode is grounded at 0.0 volts. The potential
was calculated at nine different points that are identified by
the coordinates with respect to the origin as shown in Fig. 10.



JERE AND LE COZ: AN IMPROVED FLOATING-RANDOM-WALK ALGORITHM

TABLE I
RESULTS OF POTENTIAL CALCULATION FOR OLD AND NEW METHODS
FOR TwO- DIMENSIONAL MICRO -STRIP GEOMETRY OF FiG . 10.

Position Potential Time of Potential Time of

z,y Due to Old | Ezecution | Due to New | Ezecution

Method (V) | in Seconds | Method (V) | in Seconds
50.0,15.0 | 7.707 £ 0.045 26 7.791 £ 0.043 17
55.0,15.0 | 7.495 £ 0.040 28 7.525 + 0.044 17
60.0,15.0 [ 6.108 + 0.046 36 6.196 £ 0.042 18
65.0,15.0 | 4.039 + 0.047 42 4.198 £ 0.053 18
65.0,10.0 | 3.460 £ 0.045 34 3.597 £ 0.046 16
65.0,5.0 [ 2.154 & 0.039 28 2.177 £ 0.034 15
60.0,5.0 | 3.661 £ 0.046 22 3.729 £ 0.048 14
56.0,5.0 [4.698 + 0.050 16 4.702 & 0.045 13
50.0,5.0 [ 4.863 + 0.048 15 4.904 £ 0.050 14

Table II shows the calculated potential at the various points
using the conventional and improved methods. The 95%
confidence intervals for the potentials are given. Also shown
is the execution time for the two methods. The improved
method is faster than the conventional method every point. The
explanation is similar to that given for the earlier parallel-plate
example.

V. CONCLUSIONS

The FRWA applied to two-dimensional, multi-dielectric
domains subject to Dirichlet conditions is ideally suited for
problems where the potential needs to be evaluated at only a
select number of points. Existing algorithms for solving the
multi-dielectric algorithm are inefficient and, hence, slow. We
have presented an improved algorithm, which, because of its
greater efficiency, is about two times faster than the existing
FRWA. This speed-up is achieved by using pre-calculated
transition probabilities (or Green’s functions) for some arbi-
trary two-dimensional problem. Similar pre-calculations can be
done for more dielectrics if necessary. The Green’s functions
need be calculated only once for some specific set of dielectric
constants. Once calculated, they can be used for any geometry
containing the same diclectric constants.

The speed-up in the performance becomes especially useful
when the potential is being calculated at many points that are
near the dielectric interface. This feature, for example, can be
exploited to a great degree in a recently developed FRWA that
calculates capacitances between comiplex integrated-circuit
interconnects [13].
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